Navigaing the quantum readiness journey, with Quantum Safe Cryptography

Tomas Gustavsson

Chief PKI Officer KEYFACTOR

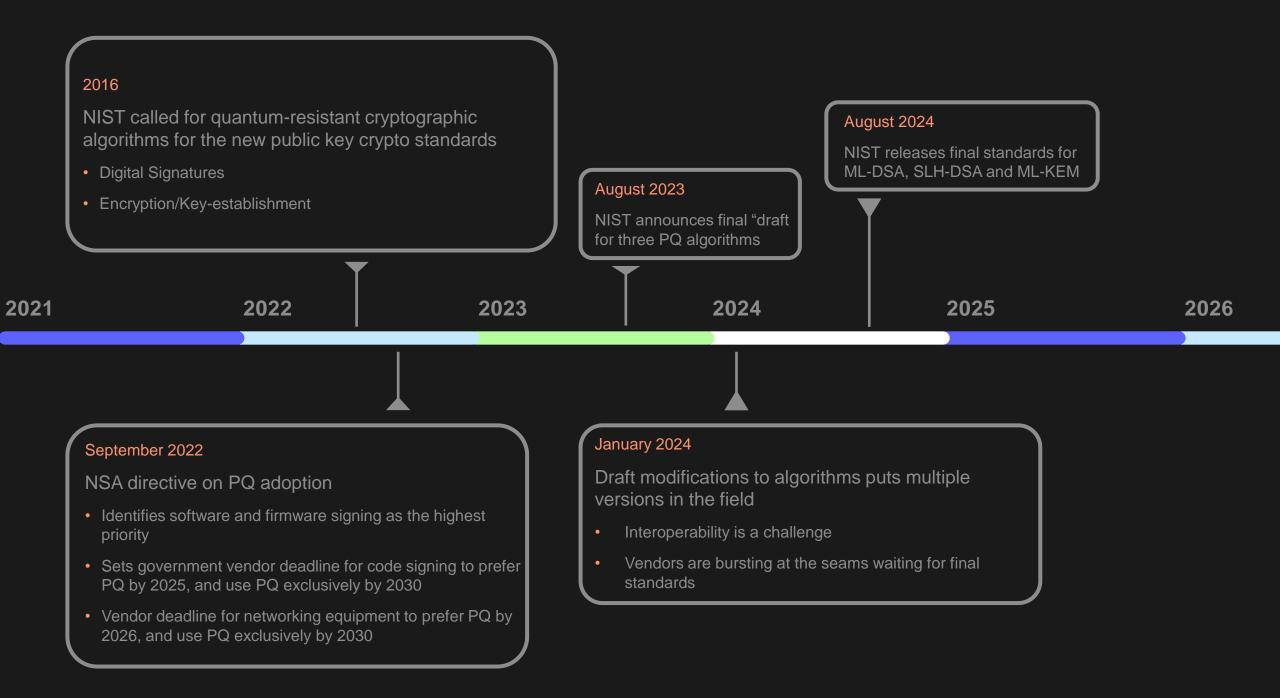
Dilithium ML-DSA / FIPS 204

- Kyber ML-KEM / FIPS 203

SPHINCS+ SLH-DSA / FIPS 205

ML-DSA / FIPS 204 ML-KEM / FIPS 203 SLH-DSA / FIPS 205

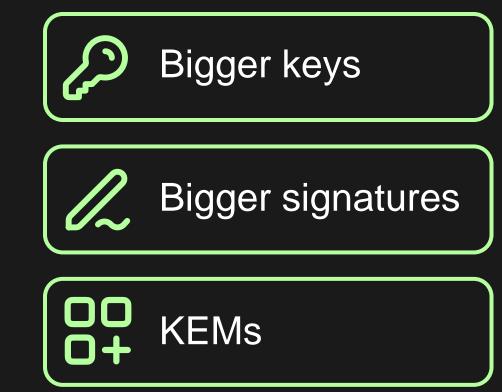
Dilithium


SPHINCS+

What if Quantum Computers become capable enough to...

threaten cryptographic algorithms? Symmetric algorithms such as AES, and Secure Hash functions such as SHA-2, are largely unaffected.

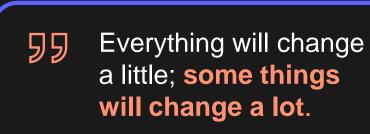
Asymmetric, or public-key algorithms effectively drop to zero strength and are un-salvageable


- RSA, ECC, and ECDSA
 - SSL/TLS, SSH, all Digital Signatures (code, firmware, documents), S/MIME, Bitcoin / blockchain participants....

Are These Algorithms Different?

In general terms, the signature algorithms are a lot like what we are used to, just with bigger keys, bigger signatures, and having greater demands on memory and CPU.

Key Encapsulation Mechanisms


The PQC answer to Diffie-Hellman key agreement and RSA key transport are quite different to what we are used to (while maintaining the overall feeling of bigness...).

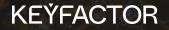
While KEMs have public and private keys, they do their work by passing around secrets contained in encapsulations, which are generated using the same process that generates the secret.

This will mean updating protocols for secret key sharing and key transport as things will not always be done the same way.

The algorithms are coming

Lots of things will need to change

Protocols and formats New algorithm identifiers, e.g. TLS, PKCS#11
HSMs, TPMs, secure elements
Any product that communicates securely on a network, or use cryptography
Cryptographic libraries
Inventory and prioritization


More Use Cases – More CAs

- Zero Trust
- TLS/mTLS
- Code / Container signing
- Service Mesh / SPIFFE
- SBOM Attestations
- IoT / Manufacturing

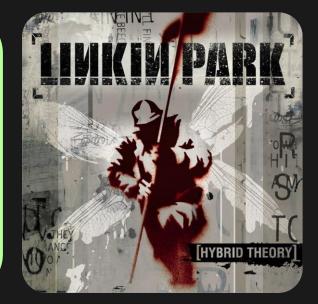
- National ID / eID
- ePassport

Any RSA, EC, Ed25519, DH, ECDH will change. Avoid sub-optimization!

Migration Plan?

Hybrid TLS

Symmetric Key Exchange at risk.


Harvest now Decrypt later

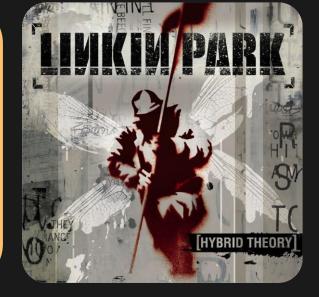
Hybrid TLS Handshake:

- 1. One classic DH (RSA/EC)
- 2. One PQ KEM (Kyber)

Belts and suspenders:

- 1 protects for failure in 2
- 2 protects for failure in 1

Hybrid certificates


A.K.A "Catalyst", or

X.509 Alternative

Three extensions added to X.509:

- 1. Alternative Public Key
- 2. Alternative Signature Algorithm
- 3. Alternative Signature

Extensions are non-critical

PKI Migration Alternatives

Migrating PKI hierarchies typically fall into one, or a combination of the following alternatives.

Complete Migration

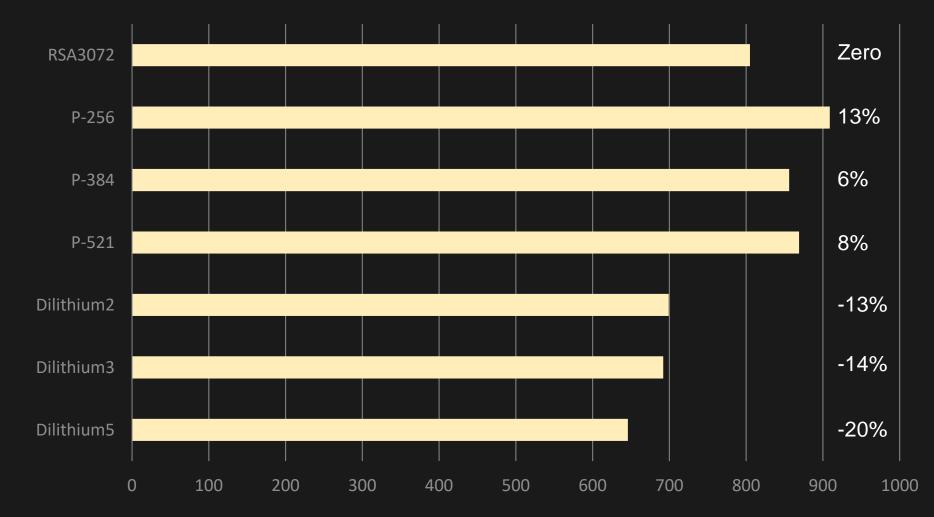
Directly switching from an old PKI to a quantum-safe PKI.

Transitional Migration

Running an old and a quantum-safe PKI in parallel during the migration phase.

Hybrid Backwards Compatible

Switching the old PKI to a backwards compatible PKI with hybrid certificates.

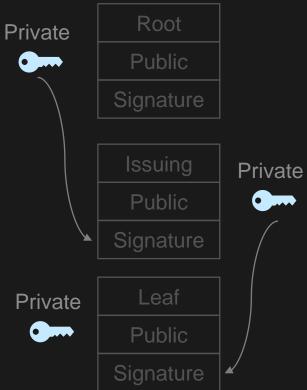


Composite Non-Backwards Compatible

Switching the old PKI to a non-backwards compatible PKI with composite algorithms.

Certificate Issuance - Software

Public Key and Signature Size

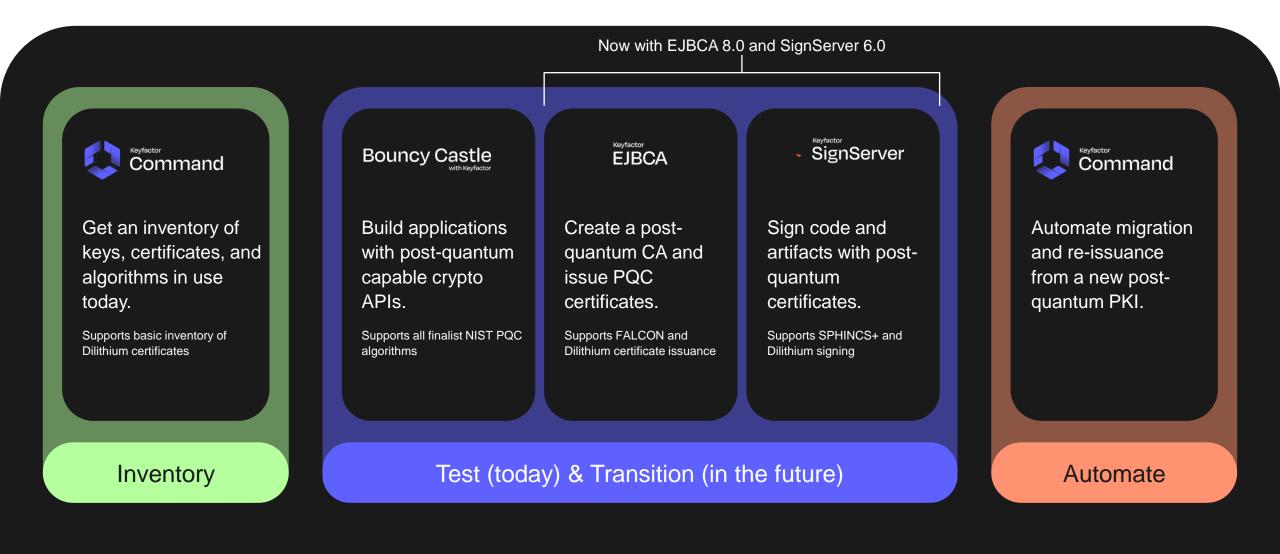

Table 2 Sizes	(in hytos)	of kovs and signatures of		
Table 2. Sizes	in bytes	of keys and signatures of	IVIL-DSA	SI

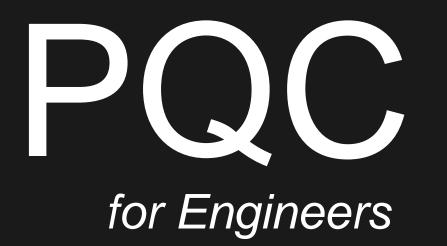
	Private Key	Public Key	Signature Size
ML-DSA-44	2560	1312	2420
ML-DSA-65	4032	1952	3309
ML-DSA-87	4896	2592	4627

Table 2. SLH-DSA parameter sets											
	n	h	d	h'	a	k	lg_w	m	security category	pk bytes	sig bytes
SLH-DSA-SHA2-128s SLH-DSA-SHAKE-128s	16	63	7	9	12	14	4	30	1	32	7856
SLH-DSA-SHA2-128f SLH-DSA-SHAKE-128f	16	66	22	3	6	33	4	34	1	32	17 088
SLH-DSA-SHA2-192s SLH-DSA-SHAKE-192s	24	63	7	9	14	17	4	39	3	48	16 224
SLH-DSA-SHA2-192f SLH-DSA-SHAKE-192f	24	66	22	3	8	33	4	42	3	48	<mark>35 66</mark> 4
SLH-DSA-SHA2-256s SLH-DSA-SHAKE-256s	32	64	8	8	14	22	4	47	5	64	29 792
SLH-DSA-SHA2-256f SLH-DSA-SHAKE-256f	32	68	17	4	9	35	4	49	5	64	49 856

Table 2 SI H-DSA narameter sets

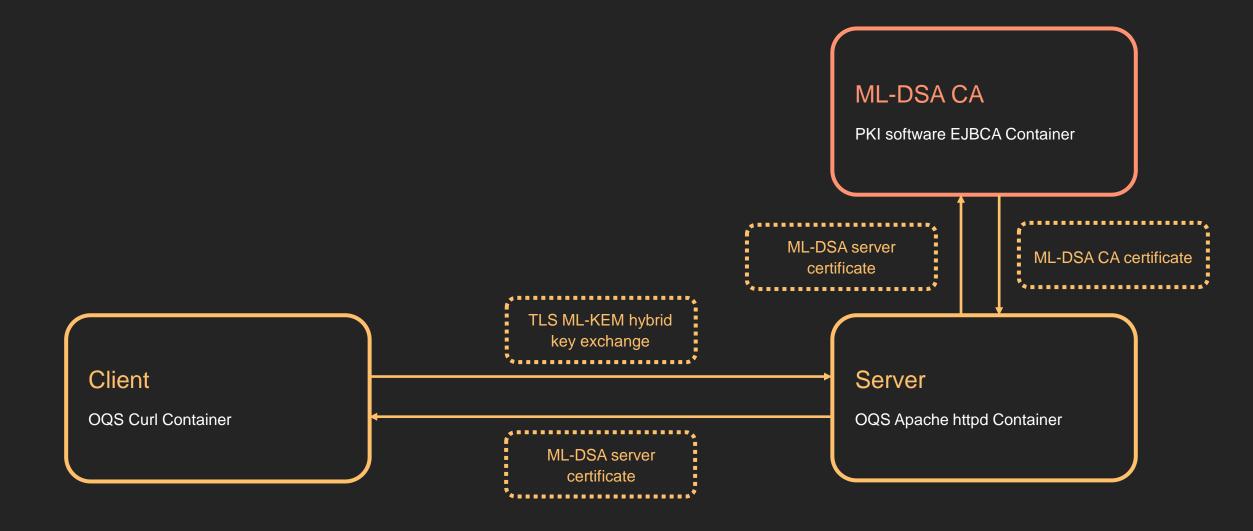
Chain Public Key and Signature Size


Algorithms	Incl Root	Excl Root
P384 P256 P256	368	224
RSA 4096 RSA 2048 RSA 2048	2304	1280
Falcon-1024 Falcon-512 Falcon-512	6813	3740
Dilithium3 Dilithium2 Dilithium2	13582	8337


Ok, so what does this mean to me?

- You can start *now*. Hybrid systems enable phased rollout.
- Signing and verification will not be horribly slow for IT systems
- Signing and verification may be slow, or not work at all, for constrained devices
- Some TLS connections may break (https://tldr.fail/)
- Database size increase
 - For example; signed transactions and logs
- Many upgrades
- Many measurements still to be done

Quantum-ready solutions


Post-Quantum Cryptography for Engineers:

https://www.ietf.org/archive/id/draftar-pquip-pqc-engineers-03.html

.....

Demo

0 00

Tomas Gustavsson

Chief PKI Officer KEYFACTOR

Any Questions?

KEYFACTOR